Author Archives: kjytay

p^2-q and q^2-p prime

“ and  are 2 prime numbers.  and  are also prime. If you divide  by a composite number , where , you’ll get a remainder of 14. If you divide  by the same number, what will you get as the remainder?” – Akash Advertisements

Posted in Random | Tagged | Leave a comment

Statistical odds and ends

Between school and family duties, I’ve been finding it hard to find any time to indulge in olympiad math blogging 😦 At the same time, I’ve missed the feeling of typing up stuff that I find interesting and sharing it … Continue reading

Posted in Uncategorized | Leave a comment

Stats Joke

From page 68 of Simon Singh’s The Simpsons and their Mathematical Secrets: While heading to a conference on board a train, three statisticians meet three biologists. The biologists complain about the cost of the train fare, but the statisticians reveal … Continue reading

Posted in Random | Tagged , | Leave a comment

[Soln] Central Limit Theorem: Strange Result!

For , define the random variable Let . Prove that as , a) the distribution of converges to for some real number , b) but converges to 2. (Credits: I learnt of this problem from Persi Diaconis in my probability class.)

Posted in Undergraduate | Tagged | Leave a comment

[Hints] Central Limit Theorem: Strange Result!

Posted in Undergraduate | Tagged | Leave a comment

Central Limit Theorem: Strange Result!

For , define the random variable Let . Prove that as , a) the distribution of converges to for some real number , b) but converges to 2. (Credits: I learnt of this problem from Persi Diaconis in my probability class.)

Posted in Undergraduate | Tagged | Leave a comment

[Soln] 2016 Putnam Problem B1

2016 Putnam B1. Let be the sequence such that and for , (as usual, the function is the natural logarithm. Show that the infinite series converges and find its sum.

Posted in Undergraduate, USA | Tagged , , , | Leave a comment